

 Navigation

 	
 index

 	
 next |

 	OrangeAssassin 1.0a1 documentation

OrangeAssassin’s documentation

Contents:

	Introduction
	Compatibility

	Contribute

	Getting the source

	Running tests

	Building documentation

	License

	Configuration
	Configuration files

	Configuration types

	Compiling rules

	Options

	Tags

	Daemon
	Starting the daemon

	Reloading the daemon

	Stopping the daemon

	Writing Rules
	Defining a rule

	Rule options

	Scoring option

	Describe option

	Priority option

	Lang option (Locali[sz]ation)

	Tflags option

	Rule Types
	Full Rule

	Body Rules

	Header Rule

	MimeHeader Rule

	URI Rule

	Meta Rule

	Eval Rule

	Plugins
	Available plugins

	Plugin reference

	Reference
	pad Package

	scripts Package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Introduction

OrangeAssassin is an open-source drop-in replacement for SpamAssassin.

Compatibility

OrangeAssassin is compatible with the following Python versions:

	Python 2.7

	Python 3.2 and later

	PyPy

	PyPy3

Contribute

	Issue Tracker [http://github.com/SpamExperts/OrangeAssassin/issues]

	Source Code [http://github.com/SpamExperts/OrangeAssassin]

Getting the source

To clone the repository using git simply run:

git clone https://github.com/SpamExperts/OrangeAssassin

Please feel free to fork us [https://github.com/SpamExperts/OrangeAssassin/fork]
and submit your pull requests.

Running tests

To run the project’s tests you will need to first:

	Create a python virtualenv and activate it (Recommended only)

	Clone the repository from GitHub.

	Install sqlalchemy or pymysql package.

	Install the base dependencies from requirements/base.txt with pip

	Install the the dependencies for the python version you are using from the
requirements folder

	Install the dependencies for running tests from requirements/tests.txt

	Download the GeoIP databases (for IPv4 and IPv6)

	Run the setup.py script

Note

Some requirements (e.g. Pillow) require some additional build
dependencies when installing them.

The OrangeAssassin tests are split into unittest and functional tests.

Unitests perform checks against the current source code and not
the installed version of OrangeAssassin. To run all the unittests suite:

py.test tests/unit/

Functional tests perform checks against the installed version of
OrangeAssassin and not the current source code. These are more extensive
and generally take longer to run. They also might need special setup.
To run the full suite of functional tests:

env USE_PICKLES=0 py.test tests/functional/ (or py.test tests/functional/)

If you want to compile rules and avoid re-parsing:

env USE_PICKLES=1 py.test tests/functional/

Or you can run all the tests with just:

py.test

An example for Python3 would be:

sudo apt-get install python3-dev libjpeg-dev build-essential zlib1g-dev
virtualenv -p /usr/bin/python3 ~/oa-env
source ~/oa-env/bin/activate
git clone https://github.com/SpamExperts/OrangeAssassin
cd OrangeAssassin
pip install sqlalchemy || pip install pymysql
pip install -r requirements/base.txt
pip install -r requirements/python3.txt
pip install -r requirements/tests.txt
wget http://geolite.maxmind.com/download/geoip/database/GeoLiteCountry/GeoIP.dat.gz
gunzip GeoIP.dat.gz
wget http://geolite.maxmind.com/download/geoip/database/GeoIPv6.dat.gz
gunzip GeoIPv6.dat.gz
python setup.py install
env USE_PICKLES=0 py.test
env USE_PICKLES=0 py.test

Note

See also the .travis.yml file where all these instructions are set
for the automatic builds.

Building documentation

In order to build the documentation based on the docs files from the
repository:

	Run the same steps for running the tests (including installing all
requirements, installing OrangeAssassin, etc.).

	Install the documentation libraries from requirements/docs.txt

	Change directory to docs

	Run make html

	The HTML version of the documentation will be generated in the
docs/_build/ directory.

See also the helper script docs/generate_plugin_doc.py that generates
a documentation page for the specified plugin. After adding a new plugin:

	Use the script to generate a new page for it

	Add a reference to the list from docs/plugins.rst

	Add autodoc to docs/pad.plugins.rst

License

This program is free software; you can redistribute it and/or modify it under
the terms of the Apache Software Foundation License version 2 [https://www.apache.org/licenses/LICENSE-2.0]
only of the License.

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Configuration

This page describes how to configure OrangeAssassin.

Configuration files

The OrangeAssassin configuration can be separated into multiple files. These are read
from the configpath and sitepath directories. You can change these
locations using the -C or -S options of the daemon and CLI script.

More files can be included from other locations by using the include option:

This includes a different file
include /etc/orangeassassin/custom_prefs.cf

Users can also configure custom preferences in their home directory when
running the CLI script. This location is also customizable with the -P
option. Note that daemon does NOT accept user preferences by default and you
will have to enable it with allow_user_rules.

Note

The order of the files IS important as it determines the order of the rules
loading and executing. To change the order in which the rules are checked
see the priority rule option.

Configuration types

OrangeAssassin accepts various types of configuration options. The current types are:

	int

	Integer number.

	float

	Floating point number.

	bool

	Boolean value, can be one of: 1, 0, True, False.

	str

	A simple string value.

	list

	A comma separated list of strings. For example defining this:

pyzor_servers public.pyzor.org,my.pyzor.example.com

Will be evaluated as:

["public.pyzor.org", "my.pyzor.example.com"]

Defining the same option multiple time WILL override the previous
setting.

	append

	This option can be specified multiple times without overriding previous
settings. Every time the option is specified the values are appended
to a list. For example for the report option:

report This message was marked as spam on _HOSTNAME_.
report The message score was _SCORE_.
report Contact me at _CONTACTADDRESS_.

Will result in the final option being evaluated as:

["This message was marked as spam on _HOSTNAME_.",
 "The message score was _SCORE_.",
 "Contact me at _CONTACTADDRESS_."]

	clear

	Clears one or more of the append type option.

Compiling rules

Users can compile rules in OrangeAssassin in two ways:

	Re-parsing the rules:

$./scripts/match.py -t -C /root/myconf/ --sitepath /root/myconf/ < /root/test.eml

	Avoiding re-parsing, in order to use this ability, users should:

2.1. Run compile.py with -sp flag to specify the path for the file where
the serialization will be done:

$./scripts/compile.py -t -C /root/myconf/ --sitepath /root/myconf/ < /root/test.eml -se /serializepath

2.2. Run match.py using:

	se (use serialization)

	sp (specify the path for the file where the serialization was done)

Note

Users can use the ability to compile rules and avoid re-parsing only
if they have:

	Python 2.7.11 or later

	Python 3.5 or later

Options

Filtering options

	required_score 5.0 (type float)

	Set a minimum required score for a message for it to be treated as
spam.

	use_bayes True (type bool)

	Controls whether or not the bayesian filter should be checked.

	use_network True (type bool)

	Controls whether or not network checks should be perfomed on the message.

	envelope_sender_header [“X-Sender”, “X-Envelope-From”, “Envelope-Sender”, “Return-Path”, “From”] (type append)

	Specifies which header should be used when determining the envelope sender
of the message.

	allow_user_rules False (type bool)

	If set to True the daemon will also load user preferences. Note that this
can be a possible security risk, which is why it’s disabled by default.

Message modifications

	add_header [] (type append)

	Adds one header to the message. The value for this option must be in the
following format:

add_header [all|spam|ham] [header_name] [header_value]

If the first argument is all then the header is added to ALL
messages. Otherwise the header is added only to messages that were
classified as spam or ham. Note that the header name will be append with
X-Spam- and the header string ill have any TAGS replaced with their
values. For example:

add_header all OA-Report Checked with OrangeAssassin _SCORE_

Will add a new header to every message like:

X-Spam-OA-Report: Checked with OrangeAssassin <score>

	remove_header [] (type append)

	Removes all header from message with the specified name. The value for this
option must be in the following format:

remove_header [all|spam|ham] [header_name]

	clear_headers N/A (type clear)

	Clear all previously set options that add or remove headers (i.e. any
from add_header or remove_header).

Reporting

	report [] (type append)

	A list of strings that form the report. The report can be returned when
the CLI script is called with -t and is also included by default in
messages that have been marked as spam. Note that this string will have
any TAGS replaced with their values.

	clear_report_template N/A (type clear)

	Clear the report list.

	report_safe 1 (type int)

	When this option is set to 0 only header modification are made to the
messages. In addition an X-Spam-Report will be added to the messages that
contains the report for this message. Note this only applies to
messages classified as spam.

When this option is set to 1 and the messages is marked as spam, OrangeAssassin
will generate a multipart/mixed messages. The new message will have
text/plain part with the OrangeAssassin report and message/rfc882 part with
the original message.

When the option is set to 2 instead of using a messages/rfc882 content
type, a text/plain one will be used instead.

	report_contact None (type str)

	Set the contact address that is exposed in the _CONTACTADDRESS_ tag.

Network Options

Syntax:

trusted_networks [!]IP_ADDRESS[/MASKLEN] [...]

internal_networks [!]IP_ADDRESS[/MASKLEN] [...]

msa_networks [!]IP_ADDRESS[/MASKLEN] [...]

	!

	excludes the network from the list

	MASKLEN

	the CIDR-style netmask length specified in bits. If it’s not specified
it will be deduced from the IP_ADDRESS

	IP_ADDRESS

	an IPv4 or IPv6 address optionally enclosed in square brackets. If no
masklen is specified then one will be deduced from the ip like this: If
the ip has less than 4 octets and ends with a trailing dot then the
masklen is num_octets * 8 if there is no trailing dot then the mask
will be 32 for IPv4 addresses and 128 for IPv6 addresses

	trusted_networks [] (type append split)

	You can specify multiple networks. With each network specified, it will be
added to the list of trusted networks.

The networks are searched sequentially with the first match stopping the
search, so you should write more specific subnets first.

Note

127.0.0.0/8 and ::1 are always included in trusted_networks and cannot
be overriden

Trusted networks in our case means that a relay host from one of these
networks is considered out of the control of spammers, open relays, or open
proxies. A trusted network could relay spam but spam will not originate
from it and it will not forge header data. So we will not do dns blacklist
checks for any host in these networks

This setting should define the networks that you trust but are not internal
relays or MXes for your domains

Examples:

Trust all in 192.168.*.*

trusted_networks 192.168.

or

trusted_networks 192.168.0.0/16

Trust all in 192.168.*.* except those in 192.168.1.*

trusted_networks !192.168.1. 192.168.

or

trusted_networks !192.168.1.0/24 192.168.0.0/16

or

trusted_networks !192.168.1.0/24
trusted_networks !192.168.0.0/16

	clear_trusted_networks N/A (type clear)

	Empties the list of trusted networks. 127.0.0.0/8 and ::1 will still exist
and they cannot be removed

	internal_networks [] (type append split)

	When you define an internal network then all hosts in the network are
considered to be MXes for your domains or internal relays.

Internal networks are a subset of trusted networks so they will be added as
a trusted network too

If trusted networks is set and internal_networks is not then trusted
networks will also be considered internal networks.

Note

127.0.0.0/8 and ::1 are always included in trusted_networks and cannot
be overriden

	clear_internal_networks N/A (type clear)

	Empties the list of internal networks. 127.0.0.0/8 and ::1 will still exist
and they cannot be removed

	msa_networks [] (type append split)

	MSA hosts, also known as MX relays are hosts that accept mail from your own
users and authenticate them properly.

These relays will never accept mail from hosts that aren’t authenticated in
some way. If an MSA relays is found then all relays after it will get the
same internal/trusted classification as that one

When using msa_networks to identify an MSA host it is recommended to treat
it as both trusted and internal. When an MSA is also acting as an MX or an
intermediate relay you must always treat it as both trusted and internal
and make sure that the MSA includes visible auth tokens in it’s Received
header

Warning

You shouldn’t include an msa that is also an MX or an intermediate
relay for an MX in this setting because it will result in uknown
external relays being trusted

	clear_msa_networks N/A (type clear)

	Empties the list of msa networks

DNS

	dns_server [] (type append)

	Specify a list of nameservers to query when doing DNS lookups. These can
specified as IPv4 or IPv6 address with an optional port followed. Example:

dns_server 127.0.0.1

dns_server 127.0.0.1:53

dns_server [::1]:53

If no such nameserver is specified, the default ones from /etc/resolv.conf
will be used.

	clear_dns_servers N/A (type clear)

	Clear any custom nameserver set by dns_server.

	default_dns_lifetime 10.0 (type float)

	Sets the timeout for a full DNS lookup. I.e. any DNS lookup will have at
most 10 seconds to get a valid response from one of the DNS server.

	default_dns_timeout 2.0 (type float)

	Set the timeout for a DNS lookup from a single nameserver.

	dns_available yes (type str)

	Configure whether DNS resolving is available or not. If you specify it as
yes or no then no tests will be performed. Example:

dns_available yes

dns_available no

If you want to determine the availability dynamically you can use the value
test or test: domain1 domain2 ... domainN. In that case a query will be
performed for three of the domain names given chosen at random. If any of
them gives a response then dns will be considered available.
The test will be performed again according to the
:ref: dns_test_interval option <dns_test_interval> Example:

dns_available test:domain1 domain2 domain3 domain4

If no domains are specified with the test option then a default list will
be used Example:

dns_available test

	dns_test_interval 600s (type str)

	If you set the dns_available option to test then
by setting, the actual test will be performed no sooner that the interval
you set here. You can set just a number or a number with a suffix to
determine the the time unit (s, m, h, d, w) Example:

dns_test_interval 600

dns_test_interval 600s

dns_test_interval 10m

	dns_query_restriction “” (type string)

	Configure restrictions for querying the dns. Almost all dns queries are
subject to the dns_query_restriction. Before performing a query the domain
is tested against these restrictions and when a match occurs the query
is performed according to the allow/deny setting for that match. If no
match is found then the query is allowed by default.

When testing a domain it’s labels are stripped successively to check if a
parent matches.

All of the following would be denied example.com, 1.example.com
1.2.example.com

dns_query_restriction deny example.com

This way 1.example.com 2.1.example.com would be denied
but example.com would be allowed

dns_query_restriction deny 1.example.com

You can deny a wider group of domains and only allow one subgroup like this:

dns_query_restriction deny example.com
dns_query_restriction allow 1.example.com

In this case example.com and all of its subdomains would be denied except
1.example.com and all of it’s subdomains which would be allowed

Tags

Template tags

The following tags can be used as placeholders in certain options.
They will be replaced by the corresponding value when they are used.

	YESNOCAPS

	“YES”/”NO” for is/isn’t spam

	YESNO

	“Yes”/”No” for is/isn’t spam

	REQD

	Message threshold

	VERSION

	version (eg. 1.0a)

	SUBVERSION

	sub-version/code revision date (eg. 2016-01-15)

	HOSTNAME

	Hostname of the machine the mail was processed on

	TESTS(,)

	tests hit separated by ”,” (or other separator)

	PREVIEW

	content preview

	REPORT

	terse report of tests hit (for header reports)

	SUMMARY

	summary of tests hit for standard report (for body reports)

	CONTACTADDRESS

	Contents of the ‘report_contact’ setting

Received Headers tags

These are metadata parsed from the last received header (top most) and exposed
in tags which can be accessed with the next keywords:

	RDNS

	Reverse DNS made automatically by MTA

	HELO

	Helo identification

	IP

	Relay IP address

	ENVFROM

	For routing the received e-mail to the intended recipient(s)

	BY

	Mail server name and system: domain of the server receiving the e-mail

	IDENT

	Ident lookup

	ID

	Message identification number given by the machine who received the message

	AUTH

	Authentication

	RELAYSTRUSTED

	Relays used and deemed to be trusted

	RELAYSUNTRUSTED

	Relays used that can not be trusted

	RELAYSINTERNAL

	Relays used and deemed to be internal

	RELAYSEXTERNAL

	Relays used and deemed to be external

	LASTEXTERNALIP

	IP address of client in the external-to-internal SMTP handover

	LASTEXTERNALRDNS

	Reverse-DNS of client in the external-to-internal SMTP handover

	LASTEXTERNALHELO

	HELO string used by client in the external-to-internal SMTP handover

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Daemon

This page explains how to run OrangeAssassin in daemon mode.

Starting the daemon

Starting the daemon can be done by running the oad.py script with the
--daemonize option and specifying a pidfile:

oad.py -d -r /var/run/oad.pid

It’s also recommended to active preforking with an appropriate number of
workers depending on your system:

oad.py -d -r /var/run/oad.pid --prefork 4

Depending on your distribution you might also want to change the path to the
configuration directory and the site configuration directory. E.g:

oad.py -d -r /var/run/oad.pid --prefork 4 -C /usr/share/spamassassin -S /etc/mail/spamassassin

You can also change the port and IP on which the daemon is listenting on:

oad.py -d -r /var/run/oad.pid --prefork 4 -i 127.0.0.2 -p 30783

For more info see the --help option of the script.

Reloading the daemon

Reloading the daemon can be achieved by sending the USR1 signal to the main
process OR by using the option of the oad.py script:

oad.py -r /var/run/oad.pid reload

Stopping the daemon

Gracefully stopping the daemon and the workers can be achieved by sending the
TERM signal to the main process OR by using the option of the oad.py
script:

oad.py -r /var/run/oad.pid stop

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Writing Rules

The rules configuration defines the checks that are done on the messages.
Each rule has a unique identifier, writen in all caps, and can have multiple
options.

After all rules are checked a final score is provided for the message and
according to the required_score option the message is marked as spam.

Defining a rule

Every rule must be in the following format:

<rule type> <rule identifier> <value>

Simple rule definition example:

body LOOK_FOR_TEST /test/

Where body is the rule type, LOOK_FOR_TEST is the identifier and the value
is /test/. This rule will look for the string “test” in the body of the
message and the rule will be triggered if it is found. When a rule is triggered
the corresponding score is added to the total score of the message.

For every message all defined rules are checked and the score applied with
the following exceptions:

	Any rule that has an identifier starting with __ will not be checked.

	Any rule that has a score of 0 will not be checked.

Note

Rules that are not checked can still be used in combination with other
rules. See the meta rule type for more details.

Rule options

Additional options can be configured to any rule in the following format:

<option name> <rule identifier> <value>

The parser will use the unique identifier to configure the option to the
specific rule with the same name. The option doesn’t have to be added
immediately after the rule definition (i.e. the next line), but it has to be
somewhere after the initial rule definition.

Note

Defining the same rule or option twice will override the previous
value.

Scoring option

Any rule defined will have by default a score of 1.0. This can be adjusted
by using the score option:

	A positive score means that the message is more likely to be spam

	A negative score means that the message is more likely to be legitimate

	A score of 0 disables the rule

Examples:

body LOOK_FOR_TEST /test/
score LOOK_FOR_TEST 1.5

header LOOK_FOR_SUBJECT_TEST Subject =~ /test/
score LOOK_FOR_SUBJECT_TEST -5

More advance scoring can be specified for any rule depending on whether the
Bayesian classifier and network tests are activated. For example:

body LOOK_FOR_TEST /test/
score LOOK_FOR_TEST 1 1.5 0.5 3

For the advanced scoring the following final score will be used:

	The first score if the Bayesian classifier and networks tests are disabled
(for this case 1)

	The second score if the Bayesian classifier is disabled but the networks
tests are enabled (for this case 1.5)

	The third score if the Bayesian classifier is enabled but the networks
tests are disabled (for this case 0.5)

	The fourth score if the Bayesian classifier and the networks tests are
enabled (for this case 3)

Note

This configuration is optional and any rule that doesn’t have it will
get the default score of 1.0.

Describe option

The describe option can be used to provide a small text that describes what
the rule is doing. This text is useful when debugging and when generating
various reports.

Example configuration:

report ==== Start report ====
report _REPORT_

body LOOK_FOR_TEST /test/
describe LOOK_FOR_TEST Look for the test string in the body.

And the result for a message that matches:

$./scripts/match.py -t -C /root/myconf/ --sitepath /root/myconf/ < /root/test.eml
Subject: Do you think this is Spam?

This is a test.

==== Start report ====

* 1.0 LOOK_FOR_TEST BODY: Look for the test string in the body.

For more details on the report see the report section of the documentation.

Note

This configuration is optional and any rule that doesn’t have it will
get “No description available”.

Priority option

This option can be used to prioritize rules to be evaluated before others. By default
the rules are checked in the order they are defined in the config file and their
priority value is 0. A negative priority will leave the evaluation at the end. Also
note that the value of the priority must be integer.

Example configuration:

body TEST_RULE1 /test/
body TEST_RULE2 /test/
body TEST_RULE3 /test/
priority TEST_RULE2 5
priority TEST_RULE1 -1

They will be evaluated in the next order:

TEST_RULE2
TEST_RULE3
TEST_RULE1

Note

This configuration is optional and any rule that doesn’t have it will get
the priority 0.

Lang option (Locali[sz]ation)

The lang option can be used to provide text in a specific language.
A line starting with the text lang xx will only be interpreted if the user is
in that locale, allowing test descriptions and templates to be set for that
language.

Rule option that enables using localized translations for rule descriptions
and reports:

The locales string should specify either both the language and country,
e.g. lang pt_BR, or just the language, e.g. lang de.

lang nl describe <RULE IDENTIFIER> <translated text>
lang nl report <translated text>

Example configuration:

report ==== Start report ====
report _REPORT_

body LOOK_FOR_TEST /test/
describe LOOK_FOR_TEST Look for the test string in the body.
lang en describe LOOK_FOR_TEST Description in en.
lang en report Look for the test string in the body.

And the result for a message that matches:

$./scripts/match.py -t -C /root/myconf/ --sitepath /root/myconf/ < /root/test.eml
Subject: Do you think this is Spam?

This is a test.

==== Start report ====

Look for the test string in the body.
* 1.0 LOOK_FOR_TEST BODY: Description in en.

For more details on the report see the report section of the documentation.

Note

lang nl describe <RULE IDENTIFIER> <translated text>
If the language specified as a second parameter correspond with locales,
description for RULE IDENTIFIER will be overwritten.

Tflags option

Used to set flags on a test. These flags are used in the score-determination
back end system for details of the test’s behaviour.

tflags <TEST_NAME> <net|nice|learn|userconf|noautolearn>

	net

	The test is a network test, and will not be run in the mass checking system
or if -L is used, therefore its score should not be modified.

	nice

	The test is intended to compensate for common false positives, and should
be assigned a negative score.

	userconf

	The test requires user configuration before it can be used.

	learn

	The test requires training before it can be used.

	noautolearn

	The test will explicitly be ignored when calculating the score for
learning systems.

Example configuration:

report ==== Start report ====
report _REPORT_

body LOOK_FOR_TEST /test/
tflags LOOK_FOR_TEST nice

And the result for a message that matches:

$./scripts/match.py -t -C /root/myconf/ --sitepath /root/myconf/ < /root/test.eml
Subject: Do you think this is Spam?

This is a test.

==== Start report ====

* -1.0 LOOK_FOR_TEST BODY

Note

This configuration is optional and any rule that doesn’t have it will
get the default value False.

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Rule Types

Full Rule

Example rule:

full NULL_IN_MESSAGES /\x00/
describe NULL_IN_MESSAGES Message has NULL characters.
score NULL_IN_MESSAGES 0.5

The full rule type matches a regular expression against the full raw
message. This means that no parts are decoded and the message is in the same
format as it was received.

Body Rules

The body rules will perform checks on the body part of the message. This means
that anything after the headers is included in the check.

Body Type

Example rule:

body LOOK_FOR_SPAM /spam/
describe LOOK_FOR_SPAM Message has spam in it's text.

The body rule type matches a regular expression against extracted text of the
message. The message is decoded and only the text parts are included when
matching.

The message is:

	decoded and stripped of any headers

	all line break replaced with a single space

	all HTML tags removed

	subject headers prepended

RawBody Type

Example rule:

rawbody LOOK_FOR_SPAM /spam/
describe LOOK_FOR_SPAM Message has spam in it's raw text.

A similar variant of this check is rawbody, which unlike body matches the
regular expression against the raw body of the message, without decoding any
parts or removing any HTML tags.

The message is:

	decoded and stripped of any headers

Header Rule

The header rule will match regular various regular expression only against one
or more headers of the message. The body of the message is completely ignored.

The are generally defined in the following format:

header <rule identifier> <header name> <match operator> <regex>

Where the <match operator> can be either:

	=~ for positive matching, i.e. the rule matches if the regex matches

	!~ for negated matching, i.e. the rule matches if the regex doesn’t match

Note

If a message has multiple headers with the same name, all headers are
verified.

Header Type

Example Rule:

header LOOK_FOR_SUBJECT_SPAM Subject =~ /spam/
describe LOOK_FOR_SUBJECT_SPAM Message has "spam" in Subject.

Note that the check is done on the decoded version of the subject and not on
the raw version. For example for a header like:

Subject: =?utf8?B?VGhpcyBzcGFtIGlz?=

The check will be done on:

Subject: This spam is

Modifiers

For the header rules you can also append various modifiers to the header name.
These will change the string on which the check is done.

	The RAW modifier will perform the check on the raw header instead of the
decoded version. Example:

header UTF8_ENCODED_SUBJECT Subject:raw =~ /^=?utf8?/
describe UTF8_ENCODED_SUBJECT Subject is encoded with UTF-8
score UTF8_ENCODED_SUBJECT -0.5

Taking the above example the regex is matched against the original header:

Subject: =?utf8?B?VGhpcyBzcGFtIGlz?=

	The ADDR modifier will perform the check on the address part of the
header. Example:

header EXAMPLE_COM_SENDER From:addr =~ /@example.com/
describe EXAMPLE_COM_SENDER Message is from @example.com
score EXAMPLE_COM_SENDER 4

The specified header is parsed and the email address is extracted before the
check is performed. For a header like:

From: Alexandru Chirila <chirila@example.com>

The check will be performed on chirila@example.com

	The NAME is similar to the addr modifier, but rather than checking the
email address, the name of the user will be used. Example:

header EXAMPLE_COM_SENDER From:name =~ /Alex/
describe EXAMPLE_COM_SENDER Message is from Alex
score EXAMPLE_COM_SENDER -4

Taking the above example the check is performed on the name instead of the
full header (Alexandru Chirila)

Exists

Another modifier that can be prepended is the exists modifier. This will make
the rule match if the message has at least one header with that name.
Regardless of the header value.

Note that unlike the other modifiers this one is prepended instead of appended.
Example:

header DKIM_EXISTS exists:DKIM-Signature
describe DKIM_EXISTS Message has DKIM signature

Header names

Any header name can be used when matching. However there are a few special
header names that will change the behaviour.

	The ALL header name can be used to check all header of the message.
Example:

header ONE_HEADER_WITH_SPAM ALL =~ /spam/
describe ONE_HEADER_WITH_SPAM One header had "spam"

	The ToCc header name can be used to check all the To and Cc header
of the message. Example:

header ONE_EXAMPLE_RECIPIENT ToCc =~ /@example.com/
describe ONE_EXAMPLE_RECIPIENT One recipient to @example.com

	The MESSAGEID header name can be used to check various MessageID headers
by a regular expression. Example:

header ONE_EXAMPLE_ID MESSAGEID =~ /example.com/
describe ONE_EXAMPLE_ID Message ID from example.com

MimeHeader Rule

The mimeheader rule is very similar to the header rule type, but unlike it,
all the checks are done on MIME header instead of the regular message headers.

The only modifier available for the mimeheader is RAW. Examples:

mimeheader HAS_PDF_ATTACHMENT Content-Type =~ /^application\/pdf/i
describe HAS_PDF_ATTACHMENT Message has pdf attachments

mimeheader HAS_PDF_ATTACHMENT Content-Type:raw =~ /^application\/pdf/i
describe HAS_PDF_ATTACHMENT Message has pdf attachments

URI Rule

The uri rules type will match regular expression on all URL extracted from
the message. Example:

uri HAS_EXAMPLE_HTTPS /^https:\/\/example.com$/\
describe HAS_EXAMPLE_HTTPS Message has HTTPS link to example.com

Meta Rule

The meta rules can be used to combine various rules in complex logic
expression. This is usually used with rules that are not checked by default.

Operators that can be used in meta rules:

	&& - and operator; matches if both expression match

	|| - or operator; matches if at least one expression matches

	! - not operator; matches if the expression doesn’t match

	() - parentheses can be used to group multiple expressions

Examples:

These rules are only checked as part of meta rules.
header __DKIM_EXISTS exists:DKIM-Signature
header __EXAMPLE_COM_SENDER From:addr =~ /@example.com/
uri __HAS_EXAMPLE_HTTPS /^https:\/\/example.com$/\

The meta rules combine the above.
meta NO_EXAMPLE_DKIM __EXAMPLE_COM_SENDER && !__DKIM_EXISTS
describe NO_EXAMPLE_DKIM @example.com sender but no DKIM signature
score NO_EXAMPLE_DKIM 5

meta EXAMPLE_URL_SENDER __EXAMPLE_COM_SENDER || __HAS_EXAMPLE_HTTPS
describe EXAMPLE_URL_SENDER example.com in sender or URL
score EXAMPLE_URL_SENDER 2

We can even combine meta rules in other meta rules.
meta NO_DKIM_AND_URL EXAMPLE_URL_SENDER && NO_EXAMPLE_DKIM
describe NO_DKIM_AND_URL No DKIM signature and example.com URL
score NO_DKIM_AND_URL 3.5

Eval Rule

The eval rule type will simply call a registered evaluation function from
a plugin and apply the score if function returns True. Example:

full PYZOR_CHECK eval:check_pyzor()
describe PYZOR_CHECK Listed in Pyzor (http://pyzor.org/)
score PYZOR_CHECK 5.0

See the specific plugins documentation for all the EVAL methods it exposes and
any other relevant details.

Note

When checking the method code reference ignore the msg and target
parameters as those are passed by default to all eval methods.

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Plugins

To load a plugin you must add the loadplugin command in the configuration
file. For example:

loadplugin pad.plugin.pyzor.PyzorPlugin

If the plugin is not located in the python path then you can also specify the
full path to the file:

loadplugin MyCustomPlugin /home/pad/my_plugins/custom_plugin.py

Some plugins are reimplementing existing ones from SA. The full list can be
seen in pad.plugins.__init__:

loadplugin Mail::SpamAssassin::Plugin::Pyzor

Available plugins

	AutoWhiteListPlugin

	Body Eval

	DumpText

	DNSEval

	ImageInfoPlugin

	Header Eval

	MIME Eval

	PDFInfoPlugin

	PyzorPlugin

	RelayCountryPlugin

	ReplaceTags

	Short Circuit

	TextCatPlugin

	URIDetailPlugin

	WhiteListSubjectPlugin

	SPF Plugin

	WLBLEvalPlugin

	Razor2Plugin

	SpamCopPlugin

	FreeMailPlugin

	DKIMPlugin

	URIEvalPlugin

	RelayEvalPlugin

	AutoLearnThreshold

Plugin reference

	plugins Package
	Module base

	Plugin awl

	Plugin body_eval

	Plugin dump_text

	Plugin dns_eval

	Plugin image_info

	Plugin header_eval

	Plugin mime_eval

	Plugin pdf_info

	Plugin pyzor

	Plugin relay_country

	Plugin replace_tags

	Plugin short_circuit

	Plugin textcat

	Plugin uri_detail

	Plugin whitelist_subject

	Plugin spf

	Plugin wlbl_eval

	Plugin razor2

	Plugin free_mail

	Plugin spam_cop

	Plugin dkim

	Plugin uri_eval

	Plugin relay-eval

	Plugin bayes

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

AutoWhiteListPlugin

Normalize scores via auto-whitelist

Example usage

loadplugin pad.plugins.awl.AutoWhiteListPlugin

user_awl_sql_username username
user_awl_sql_password password
user_awl_sql_table tablename
user_awl_dsn DBI:databasetype:databasename:hostname:port

header AWL eval:check_from_in_auto_whitelist()
describe AWL From: address is in the auto white-list
priority AWL 1000

Usage

The schema for the auto whitelist:

CREATE TABLE `awl` (
 `username` varchar(255) NOT NULL DEFAULT '',
 `email` varchar(200) NOT NULL DEFAULT '',
 `ip` varchar(40) NOT NULL DEFAULT '',
 `count` int(11) NOT NULL DEFAULT '0',
 `totscore` float NOT NULL DEFAULT '0',
 `signedby` varchar(255) NOT NULL DEFAULT '',
 PRIMARY KEY (`username`,`email`,`signedby`,`ip`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COMMENT='Used by SpamAssassin for the auto-whitelist functionality'

Options

	auto_whitelist_ipv4_mask_len 16 (type int)

	The AWL database keeps only the specified number of most-significant bits
of an IPv4 address in its fields, so that different individual IP addresses
within a subnet belonging to the same owner are managed under a single
database record. As we have no information available on the allocated
address ranges of senders, this CIDR mask length is only an approximation.
The default is 16 bits, corresponding to a former class B. Increase the
number if a finer granularity is desired, e.g. to 24 (class C) or 32.
A value 0 is allowed but is not particularly useful, as it would treat the
whole internet as a single organization. The number need not be a multiple
of 8, any split is allowed.

	auto_whitelist_factor 0.5 (type float)

	How much towards the long-term mean for the sender to regress a message.
Basically, the algorithm is to track the long-term mean score of messages for
the sender (C<mean>), and then once we have otherwise fully calculated the
score for this message (C<score>), we calculate the final score for the
message as: C<finalscore> = C<score> + (C<mean> - C<score>) * C<factor>
So if C<factor> = 0.5, then we’ll move to half way between the calculated
score and the mean. If C<factor> = 0.3, then we’ll move about 1/3 of the way
from the score toward the mean. C<factor> = 1 means just use the long-term
mean; C<factor> = 0 mean just use the calculated score.

	auto_whitelist_ipv6_mask_len 48 (type int)

	The AWL database keeps only the specified number of most-significant bits

	of an IPv6 address in its fields, so that different individual IP addresses

	within a subnet belonging to the same owner are managed under a single
database record. As we have no information available on the allocated address
ranges of senders, this CIDR mask length is only an approximation. The default
is 48 bits, corresponding to an address range commonly allocated to individual
(smaller) organizations. Increase the number for a finer granularity, e.g.
to 64 or 96 or 128, or decrease for wider ranges, e.g. 32. A value 0 is
allowed but is not particularly useful, as it would treat the whole internet
as a single organization. The number need not be a multiple of 4, any split
is allowed.

EVAL rules

Tags

	AWL

	AWL modifier

	AWLMEAN

	Mean score on which AWL modification is based

	AWLCOUNT

	Number of messages on which AWL modification is based

	AWLPRESCORE

	Score before AWL

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

Body Eval

Exposes several eval rules that perform checks on the body of the message.

Example usage

loadplugin pad.plugins.body_eval.BodyEval

body MPART_ALT_DIFF eval:multipart_alternative_difference('99', '100')
describe MPART_ALT_DIFF HTML and text parts are different

body MPART_ALT_DIFF_COUNT eval:multipart_alternative_difference_count('3', '1')
describe MPART_ALT_DIFF_COUNT HTML and text parts are different

Usage

This plugin only has EVAL methods. See Eval Rule for general
details on how to use such methods.

Options

None

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

DumpText

Similar to the DumpText demo SA plugin.

Example usage

loadplugin pad.plugins.dump_text.DumpText

Usage

Sample plugin used for testing.

Options

None

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

DNSEval

Expose some eval rules that do checks on DNS lists.

Example usage

loadplugin pad.plugins.dns_eval.DNSEval

header IP_IN_LIST eval:check_rbl('example', 'example.com.', '127.0.0.10')
describe IP_IN_LIST IP in example.com list with response 10

Usage

This plugin only has EVAL methods. See Eval Rule for general
details on how to use such methods.

Options

None

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

ImageInfoPlugin

Image Info plugin.

Example usage

loadplugin pad.plugins.image_info.ImageInfoPlugin

body DC_IMAGE001_GIF eval:image_named('image001.gif')
describe DC_IMAGE001_GIF Contains image named image001.gif

Usage

This plugin exposes various methods to check image information with
eval rules.

Options

None

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

Header Eval

Expose some eval rules that do checks on the headers.

Example usage

loadplugin pad.plugins.header_eval.HeaderEval

header DATE_IN_PAST_03_06 eval:check_for_shifted_date('-6', '-3')
describe DATE_IN_PAST_03_06 Date: is 3 to 6 hours before Received: date

Usage

This plugin exposes various eval rules that perform checks on the headers
of the message.

See documentation for each individual rule.

Options

	util_rb_tld [] (type append_split)

	Add to the TLD list

	util_rb_2tld [] (type append_split)

	Add to the 2 level TLD list

	util_rb_3tld [] (type append_split)

	Add to the 3 level TLD list

EVAL rules

Tags

N/A

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

MIME Eval

Expose some eval rules that do checks on the MIME headers

Example usage

loadplugin pad.plugins.mime_eval.MIMEEval

body CHARSET_FARAWAY eval:check_for_faraway_charset()
describe CHARSET_FARAWAY Character set indicates a foreign language

Usage

This plugin exposes various eval rules that perform checks on the MIME headers
of the message.

See documentation for each individual rule.

Options

None

EVAL rules

Tags

N/A

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

PDFInfoPlugin

This plugin helps to detect spam using attached PDF files

Example usage

loadplugin pad.plugins.pdf_info.PDFInfoPlugin

body PDF_MIME_COUNT_1 eval:pdf_count(1,3)
describe PDF_MIME_COUNT_1 Message contains at least 1 PDF file, maximum 3.

body PDF_IMAGE_COUNT eval:pdf_image_count(3, 10)
describe PDF_IMAGE_COUNT Total number of images in PDF is between 3 and 10

body PDF_PIX_COV eval:pdf_pixel_coverage(100, 450)
describe PDF_PIX_COV Contains between 100 and 450 pixel in images

body PDF_NAMED eval:pdf_named('some_file.pdf')
describe PDF_NAMED Check if a pdf named "some_file.pdf" exists in the message.

body PDF_NAMED_REGEX eval:pdf_named_regex('/^(?:my|your)test\.pdf$/')
describe PDF_NAMED_REGEX Match if pdf is "mytest.pdf" or "yourtest.pdf"

body PDF_MATCH_MD5 eval:pdf_match_md5('C359F8F89B290DA99DC997ED50117CDF')
describe PDF_MATCH_MD5 Match with the PDF with that md5 hash

body PDF_FUZZY_MD5 eval:pdf_match_fuzzy_md5('7340821445D975EEF6F5BDE2EC257900')
describe PDF_FUZZY_MD5 Match if md5hash is in the fuzzy md5 hashes

body PDF_MATCH_DETAIL eval:pdf_match_details('author', '/^mobile$/')
describe PDF_MATCH_DETAIL Match if "mobile" is the author of the PDF file.

body PDF_IS_ENCRYPTED eval:pdf_is_encrypted()
describe PDF_IS_ENCRYPTED Match if one of the PDF files is encrypted.

body PDF_IS_EMPTY_BODY eval:pdf_is_empty_body(100)
describe PDF_IS_EMPTY_BODY Interested in PDF files larger than 100 bytes.

Usage

This plugin only has EVAL methods. See Eval Rule for general
details on how to use such methods.

Options

None

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

PyzorPlugin

Checks the message against the Pyzor server.

Example usage

loadplugin pad.plugins.pyzor.PyzorPlugin

body PYZOR eval:check_pyzor()
describe PYZOR Listed in Pyzor (http://pyzor.org)
score PYZOR 2

Usage

This plugin exposes a single eval rule that checks the message
against the Pyzor server. For more information about pyzor see
the Pyzor documentation [http://pyzor.org]

Options

	use_pyzor True (type bool)

	Controls whether or not the message should be checked against the
Pyzor server.

	pyzor_servers [‘public.pyzor.org:24441’] (type list)

	A list of Pyzor servers to check. The plugin will check ALL servers
specified in this list.

	pyzor_max 5 (type int)

	The minimum number of times a message needs to be reported as spam
to have the rule match.

	pyzor_timeout 3.5 (type float)

	The timeout for the server response.

EVAL rules

Tags

	_PYZOR_DIGEST_

	The pyzor digest

	_PYZOR_COUNT_

	The number of times the message was reported as spam on Pyzor

	_PYZOR_WL_COUNT_

	The number of times the message was whitelisted on Pyzor

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

RelayCountryPlugin

RelayCountry Plugin.

Example usage

loadplugin pad.plugins.relay_country.RelayCountryPlugin

Usage

<Description>

Options

	geodb-ipv6 GeoIPv6.dat (type str)

	<Option description>

	geodb GeoIP.dat (type str)

	<Option description>

EVAL rules

None

Tags

<Describe TAGS>

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

ReplaceTags

This plugin allows rules to contain regular expression tags.

Example usage

loadplugin pad.plugins.replace_tags.ReplaceTags

replace_start <
replace_end >
replace_tag A [a@]
replace_tag G [gk]
replace_tag I [il|!1y\?\xcc\xcd\xce\xcf\xec\xed\xee\xef]
replace_tag R [r3]
replace_tag V (?:[vu]|\\\/)
replace_tag SP [\s~_-]

body VIAGRA_OBFU /(?!viagra)<V>+<SP>*<I>+<SP>*<A>+<SP>*<G>+<SP>*<R>+<SP>*<A>+/i
describe VIAGRA_OBFU Attempt to obfuscate "viagra"
replace_rules VIAGRA_OBFU

Usage

After configuring the replacement tags, the tag can then be used in any
regular expression rule. By adding the extra replace_rules NAME line.

Options

	replace_tag [] (type append)

	Assign a valid regular expression to tagname.

	replace_pre [] (type append)

	Assign a valid regular expression to tagname. The expression will be placed
before each tag that is replaced.

	replace_post [] (type append)

	Assign a valid regular expression to tagname. The expression will be placed
between each two immediately adjacent tags that are replaced.

	replace_inter [] (type append)

	Assign a valid regular expression to tagname. The expression will be placed
after each tag that is replaced.

	replace_rules [] (type append_split)

	Specify a list of symbolic test names (separated by whitespace) of tests
which should be modified using replacement tags. Only simple regular
expression body, header, uri, full, rawbody tests are supported.

	replace_end > (type str)

	String(s) which indicate the end of a tag inside a rule. Only tags enclosed
by the start and end strings are found and replaced.

	replace_start < (type str)

	String(s) which indicate the start of a tag inside a rule. Only tags enclosed
by the start and end strings are found and replaced.

EVAL rules

None

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

Short Circuit

This plugin implements simple, test-based shortcircuiting.
Short-circuiting a test will force all other pending rules
to be skipped, if that test is hit.

Example usage

loadplugin pad.plugins.short_circuit.ShortCircuit

report Details: _SCORE_/_REQD_ (_SCTYPE_)
add_header all Status "_YESNO_, score=_SCORE_ shortcircuit=_SCTYPE_"

shortcircuit_spam_score 100
shortcircuit_ham_score -100

body TEST_RULE /test/
describe TEST_RULE Test Rule
score TEST_RULE 0.01
shortcircuit TEST_RULE on

Usage

The plugin adds a new rule option
shortcircuit. To short circuit a rule simply add to the
configuration file:

shortcircuit <rule identifier> [on|off|ham|spam]

Depending on the short-circuit type you select, the following
behaviour is applied:

	on

	If the rule matches the message the all following rules are
skipped. No adjustments are done to the message score and
the final result is whatever the total is at that point.

	off

	Disables short-circuiting. The rule simply behaves as normal.

	spam

	If the rule matches the message the all following rules are
skipped. The message score is adjusted by adding the value
of shortcircuit_spam_score.

	ham

	If the rule matches the message the all following rules are
skipped. The message score is adjusted by adding the value
of shortcircuit_ham_score.

Options

	shortcircuit_spam_score 100.0 (type float)

	The score applied for short-circuited rules with the spam
type

	shortcircuit_ham_score -100.0 (type float)

	The score applied for short-circuited rules with the ham
type

EVAL rules

None

Tags

	SCRULE

	The name of the rule that caused the short-circuit. This
gets the value none if there was no such rule.

	SCTYPE

	The type of short-circuit used. This can have the following
values: on, off, ham or spam.

	SC

	Combines the other two tags for convenience. Equivalent to
SCRULE (_SCTYPE_)

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

TextCatPlugin

Detect the language of the message.

Current available languages:

af ar bg bn ca cs cy da de el en es et fa fi fr gu
he hi hr hu id it ja kn ko lt lv mk ml mr ne nl no
pa pl pt ro ru sk sl so sq sv sw ta te th tl tr uk
ur vi zh-cn zh-tw

Example usage

loadplugin pad.plugins.textcat.TextCatPlugin

Usage

N/A

Options

	textcat_optimal_ngrams 0 (type int)

	<Option description>

	textcat_max_ngrams 400 (type int)

	<Option description>

	ok_languages all (type list)

	<Option description>

	textcat_acceptable_prob 0.7 (type float)

	<Option description>

	inactive_languages (type list)

	<Option description>

	textcat_acceptable_score 1.05 (type float)

	<Option description>

	textcat_max_languages 5 (type int)

	<Option description>

EVAL rules

Tags

N/A

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

URIDetailPlugin

URIDetail Plugin.

Example usage

loadplugin pad.plugins.uri_detail.URIDetailPlugin

Usage

N/A

Options

	uri_detail [] (type list)

	<Option description>

EVAL rules

None

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

WhiteListSubjectPlugin

Whitelist Subject plugin.

Example usage

loadplugin pad.plugins.whitelist_subject.WhiteListSubjectPlugin

Usage

N/A

Options

	blacklist_subject [] (type list)

	<Option description>

	whitelist_subject [] (type list)

	<Option description>

EVAL rules

Tags

N/A

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

SPF Plugin

This plugin checks a message against Sender Policy Framework (SPF)
records published by the domain owners in DNS to fight email
address forgery and make it easier to identify spams.

Example usage

Evaluation of an SPF record can return any of these results:
Pass

The SPF record designates the host to be allowed to send.
Action: accept.

	Fail

	The SPF record has designated the host as NOT being allowed to send.
Action: reject.

	SoftFail

	The SPF record has designated the host as NOT being allowed to send
but is in transition. Action: accept but mark.

	Neutral

	The SPF record specifies explicitly that nothing can be said about
validity. Action: accept.

	None

	The domain does not have an SPF record or the SPF record does not
evaluate to a result. Action: accept.

	PermError

	A permanent error has occured (eg. badly formatted SPF record).
Action: unspecified.

	TempError

	A transient error has occured. Action: accept or reject

loadplugin pad.plugins.spf.SpfPlugin

header SPF_PASS eval:check_for_spf_pass()
header SPF_NEUTRAL eval:check_for_spf_neutral()
header SPF_FAIL eval:check_for_spf_fail()
header SPF_SOFTFAIL eval:check_for_spf_softfail()

Usage

This plugin has EVAL methods. See Eval Rule for general
details on how to use such methods.

Options

	whitelist_from_spf address@example.com

	<Not available yet>

	spf_timeout n (default: 5)

	How many seconds to wait for an SPF query to complete,
before scanning continues without the SPF result.

	ignore_received_spf_header (False|True) (default: False)

	By default, to avoid unnecessary DNS lookups, the plugin will try to
use the SPF results found in any Received-SPF headers it finds in
the message that could only have been added by an internal relay

Set this option to True to ignore any Received-SPF headers present
and to have the plugin perform the SPF check itself.

	use_newest_received_spf_header (False|True) (default: False)

	By default, when using Received-SPF headers, the plugin will attempt
to use the oldest (bottom most) Received-SPF headers, that were added
by internal relays, that it can parse the results from since they are
the most likely to be accurate.This is done so that if you have an
incoming mail setup where one of your primary MXes doesn’t know about
a secondary MX (or your MXes don’t know about some sort of forwarding
relay that SA considers trusted+internal) but SA is aware of the actual
domain boundary (internal_networks setting) SA will use the results
that are most accurate.

Use this option to start with the newest (top most) Received-SPF
headers, working downwards until results are successfully parsed.

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

WLBLEvalPlugin

This plugin checks if from addresses and to addresses are in options list
by domanin, IP and URI.

Example usage

loadplugin pad.plugins.wlbl_eval.WLBLEvalPlugin

Usage

N/A

Options

	blacklist_from [] (type append_split)

	Used to specify addresses which send mail that is often tagged (incorrectly)
as non-spam, but which the user doesn’t want. Same format as whitelist_from.

	whitelist_from [] (type append_split)

	Used to whitelist sender addresses which send mail that is often tagged
(incorrectly) as spam.

	whitelist_to [] (type append_split)

	If the given address appears as a recipient in the message headers
(Resent-To, To, Cc, obvious envelope recipient, etc.) the mail will be
whitelisted. There are three levels of To-whitelisting, whitelist_to,
more_spam_to and all_spam_to. Users in the first level may still get some
spammish mails blocked, but users
in all_spam_to should never get mail blocked.

	all_spam_to [] (type append_split)

	See above.

	more_spam_to [] (type append_split)

	See above.

	blacklist_to [] (type append_split)

	If the given address appears as a recipient in the message headers
(Resent-To, To, Cc, obvious envelope recipient, etc.) the mail will be blacklisted.

	def_whitelist_from_rcvd [] (type list)

	Same as whitelist_from_rcvd, but used for the default whitelist entries
in the OrangeAssassin distribution. The whitelist score is lower, because these
are often targets for spammer spoofing.

	whitelist_from_rcvd [] (type list)

	Works similarly to whitelist_from, except that in addition to matching a sender
address, a relay’s rDNS name or its IP address must match too for the whitelisting
rule to fire. The first parameter is a sender’s e-mail address to whitelist,
and the second is a string to match the relay’s rDNS, or its IP address.

	whitelist_allow_relays [] (type append_split)

	Specify addresses which are in whitelist_from_rcvd that sometimes send through
a mail relay other than the listed ones.

	enlist_uri_host [] (type list)

	Adds one or more host names or domain names to a named list of URI domains.

	delist_uri_host [] (type list)

	Removes one or more specified host names from a named list of URI domains.

	blacklist_uri_host [] (type list)

	Is a shorthand for a directive: enlist_uri_host (BLACK) host.

	whitelist_uri_host [] (type list)

	Is a shorthand for a directive: enlist_uri_host (WHITE) host

	util_rb_tld [] (type append_split)

	This option maintains list of valid TLDs in the RegistryBoundaries code.

	util_rb_2tld [] (type append_split)

	This option maintains list of valid 2nd-level TLDs in the RegistryBoundaries code.

	util_rb_3tld [] (type append_split)

	This option maintains list of valid 3rd-level TLDs in the RegistryBoundaries code.

EVAL rules

Tags

Non

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

Razor2Plugin

Checks the message against the Razor server.

Example usage

loadplugin pad.plugins.pyzor.Razor2Plugin

body RAZOR2 eval:check_razor2()
describe RAZOR2 Listed in Razor2 (http://razor.sf.net/)
score RAZOR2 1

Usage

This plugin exposes a two eval rules that checks the message
against the Razor server. “check_razor2_range” method it is implemented,
but in order to verify a message, you can use PyzorPlugin.
For more information about pyzor see the
Razor documentation [http://razor.sf.net/]

Options

	use_razor2 True (type bool)

	Controls whether or not the message should be checked against the
Razor server.

	razor_config “” (type str)

	Define the filename used to store Razor’s configuration settings.
Currently this is left to Razor to decide.

	razor_timeout 5 (type int)

	How many seconds you wait for Razor to complete before you go on without
the results.

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

SpamCopPlugin

SpamCop is a service for reporting spam. SpamCop determines the origin of
unwanted email and reports it to the relevant Internet service providers.
Note that spam reports sent by this plugin to SpamCop each include the
entire spam message.

Example usage

loadplugin pad.plugins.spam_cop.SpamCopPlugin

Usage

N/A

Options

	spamcop_from_address “” (type str)

	This address is used during manual reports to SpamCop as the From: address.
You can use your normal email address. If this is not set, a guess will be
used as the From: address in SpamCop reports.

	spamcop_to_address “spamassassin-submit@spam.spamcop.net” (type str)

	Your customized SpamCop report submission address. You need to obtain this
address by registering at http://www.spamcop.net/. If this is not set,
SpamCop reports will go to a generic reporting address for OrangeAssassin
users and your reports will probably have less weight in the SpamCop system.

	spamcop_max_report_size 50 (type int)

	Messages larger than this size (in kilobytes) will be truncated in report
messages sent to SpamCop. The default setting is the maximum size that
SpamCop will accept at the time of release.

dont_report_to_spamcop False (type bool)

EVAL rules

None

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

FreeMailPlugin

Checks the headers for indication that sender’s domain is that of a site
offering free email services.

Example usage

loadplugin pad.plugins.free_mail.FreeMailPlugin

header CHECK_FREEMAIL_FROM eval:check_freemail_from()
header CHECK_FREEMAIL_FROM_REGEX eval:check_freemail_from('\d@')

header CHECK_FREEMAIL_BODY eval:check_freemail_body()
header CHECK_FREEMAIL_BODY_REGEX eval:check_freemail_body('\d@')

header CHECK_FREEMAIL_HEADER eval:check_freemail_header('From')
header CHECK_FREEMAIL_HEADER_REGEX eval:check_freemail_header('From', '\d@')

header CHECK_FREEMAIL_REPLY_TO eval:check_freemail_replyto('replyto')
header CHECK_FREEMAIL_REPLY eval:check_freemail_replyto('reply')

util_rb_tld com
util_rb_tld net

freemail_domains example.com
freemail_add_describe_email 1

report _REPORT_
report _SCORE_
report _TESTS_

The output:

* 1.0 CHECK_FREEMAIL_BODY Body has freemails
 (test[at]example.com)
* 1.0 CHECK_FREEMAIL_REPLY Different freemails in reply header and body
 (sender[at]example.com test[at]example.com)
* 1.0 CHECK_FREEMAIL_FROM Sender address is freemail
 (sender[at]example.com)
* 1.0 CHECK_FREEMAIL_HEADER Header From is freemail
 (sender[at]example.com)
4.0
CHECK_FREEMAIL_BODY,CHECK_FREEMAIL_REPLY,CHECK_FREEMAIL_FROM,CHECK_FREEMAIL_HEADER

Usage

If From-address is freemail, and Reply-To or address found in mail body is

a different freemail address, return success.

Options

	freemail_domains [] (type append_split)

	List of domains to be used in checks.
Regexp is not supported, but following wildcards work:

? for single character (does not match a dot)
* for multiple characters (does not match a dot)

	For example:

	freemail_domains hotmail.com hotmail.co.?? yahoo.* yahoo.*.*

	freemail_whitelist [] (type append_split)

	Emails or domains listed here are ignored (pretend they are not freemails).
No wildcards!

freemail_max_body_emails 5 (type int)

freemail_max_body_freemails 3 (type int)

freemail_skip_when_over_max True (type bool)

freemail_skip_bulk_envfrom True (type bool)

	freemail_add_describe_email True (type bool)

	When this option is True (enabled), the report also contains the email
that matched.

For example:

freemail_add_describe_email 1

	
	1.0 CHECK_FREEMAIL_FROM Sender address is freemail

	
(sender[at]example.com)

AND

freemail_add_describe_email 0

	1.0 CHECK_FREEMAIL_FROM Sender address is freemail

	util_rb_tld [] (type append_split)

	List of valid tlds (level 1)

For example:
.com, .ro

	util_rb_2tld [] (type append_split)

	List of valid tlds (level 2)

For example:
.co.uk, .org.uk

	util_rb_3tld [] (type append_split)

	List of valid tlds (level 3)

For example:
.sa.edu.au

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

DKIMPlugin

This plugin performs verifications on DKIM signature

Example usage

loadplugin pad.plugins.dkim.DKIMPlugin

adsp_override example.com custom_high
whitelist_from_dkim user@example.com
def_whitelist_from_dkim *@example.com example.com

full DKIM_SIGNED eval:check_dkim_signed("example.com")
full DKIM_VALID eval:check_dkim_valid("example.com")
full DKIM_VALID_AU eval:check_dkim_valid_author_sig('example.com')

header DKIM_ADSP_NXDOMAIN eval:check_dkim_adsp('*', 'example.com')
header DKIM_ADSP_ALL eval:check_dkim_adsp('A')
header DKIM_ADSP_DISCARD eval:check_dkim_adsp('D')
header DKIM_ADSP_CUSTOM_LOW eval:check_dkim_adsp('1')
header DKIM_ADSP_CUSTOM_MED eval:check_dkim_adsp('2')
header DKIM_ADSP_CUSTOM_HIGH eval:check_dkim_adsp('3')

header USER_IN_DKIM_WL eval:check_for_dkim_whitelist_from()
header USER_IN_DEF_DKIM_WL eval:check_for_def_dkim_whitelist_from()

Usage

<Description>

Options

	whitelist_from_dkim [] (type list)

	Used to whitelist sender addresses which send mail that is often tagged
(incorrectly) as spam.

	def_whitelist_from_dkim [] (type append_split)

	Same as ‘whitelist_from_dkim’, but used for the deafult whitelist entries.

	unwhitelist_from_dkim [] (type list)

	Removes an email address with its corresponding signing-domain field from
def_whitelist_from_dkim and whitelist_from_dkim tables, if it exists.

	adsp_override [] (type list)

	To override domain’s signing practices in a OrangeAssassin configuration file,
specify an adsp_override directive for each sending domain to be overridden.
An optional second parameter is one of the following keywords:
nxdomain, unknown, all, discardable, custom_low, custom_med, custom_high.
Absence of this second parameter implies discardable.

	dkim_minimum_key_bits 1024 (type int)

	The smallest size of a signing key (in bits) for a valid signature to be
considered for whitelisting.

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

URIEvalPlugin

URIEval Plugin.

Example usage

loadplugin pad.plugins.uri_eval.URIEvalPlugin

Usage

N/A

Options

None

EVAL rules

Tags

N/A

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

RelayEvalPlugin

Check the data parsed from ReceivedParser against different rules.

Evaluate a set of rules against “Received” headers, they are form a list of all
the servers/computers through which the message traveled in order to reach
the destination.

Example usage

loadplugin pad.plugins.relay_eval.RelayEval

header RCVD_HELO_IP_MISMATCH eval:helo_ip_mismatch()
describe RCVD_HELO_IP_MISMATCH Received: HELO and IP do not match, but should

header RCVD_NUMERIC_HELO eval:check_for_numeric_helo()
describe RCVD_NUMERIC_HELO Received: contains an IP address used for HELO

header __FORGED_RCVD_TRAIL eval:check_for_forged_received_trail()

header NO_RDNS_DOTCOM_HELO eval:check_for_no_rdns_dotcom_helo()
describe NO_RDNS_DOTCOM_HELO Host HELO'd as a big ISP, but had no rDNS

Usage

This plugin only has EVAL methods. See Eval Rule for general
details on how to use such methods.

Options

None

EVAL rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

AutoLearnThreshold

Implements the functionality to submit messages for learning when they
fall outside the defined threshold

Example usage

loadplugin pad.plugins.auto_learn_threshold.AutoLearnThreshold
bayes_auto_learn_threshold_nonspam 0.5 # optional, default is 0.1
bayes_auto_learn_threshold_nonspam 12.0 # optional, default is 12.0
bayes_auto_learn_on_error 1 # optional, default is 1

Usage

When this plugin is loaded after the message has been evaluated by all other
plugins it will be evaluated for autolearning. It will be evalute accoring to the
following rules:

It calculates the total score for the message from tests that don’t have the
noautolearn, userconf tflags

General requirements

	The autolearn score includes at least 3 body and 3 header tests scores
(unless any test has the tflag autolearn_force in which case the header

and body tests requirement drops to -99)

	The bayes plugin classified the message differently than this plugin
(unless bayes_auto_learn_on_error option is set to 0)

Case 1

	The message score was higher than the required score

	The message is considered spam by the autolearn plugin
(the autolearn score is higher than the spam threshold)

	The score from tests with the learn tflag is at least -1

Case 2

	The message score was lower than the required score

	The message is considered ham by the autolearn plugin
(the autolearn score is lower than the ham threshold)

	The score from tests with the learn tflag is at least 1

Options

	bayes_auto_learn_threshold_nonspam 0.1 (type float)

	Messages that score below this value will be submitted for learning as HAM

	bayes_auto_learn_threshold_spam 12.0 (type float)

	Messages that score over this value will be submitted for learning as SPAM

	bayes_auto_learn_on_error 0 (type bool)

	Messages will be submitted for learning only if Bayes disagrees with the
classification

EVAL rules

This plugin doesn’t expose any eval rules

Tags

None

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

plugins Package

Module base

Plugin awl

Plugin body_eval

Plugin dump_text

Plugin dns_eval

Plugin image_info

Plugin header_eval

Plugin mime_eval

Plugin pdf_info

Plugin pyzor

Plugin relay_country

Plugin replace_tags

Plugin short_circuit

Plugin textcat

Plugin uri_detail

Plugin whitelist_subject

Plugin spf

Plugin wlbl_eval

Plugin razor2

Plugin free_mail

Plugin spam_cop

Plugin dkim

Plugin uri_eval

Plugin relay-eval

	members:	

	undoc-members:	

	show-inheritance:

		

Plugin bayes

	members:	

	undoc-members:	

	show-inheritance:

		

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

Reference

	pad Package
	plugins Package
	Module base

	Plugin awl

	Plugin body_eval

	Plugin dump_text

	Plugin dns_eval

	Plugin image_info

	Plugin header_eval

	Plugin mime_eval

	Plugin pdf_info

	Plugin pyzor

	Plugin relay_country

	Plugin replace_tags

	Plugin short_circuit

	Plugin textcat

	Plugin uri_detail

	Plugin whitelist_subject

	Plugin spf

	Plugin wlbl_eval

	Plugin razor2

	Plugin free_mail

	Plugin spam_cop

	Plugin dkim

	Plugin uri_eval

	Plugin relay-eval

	Plugin bayes

	protocol Package
	protocol Package

	base Module

	check Module

	noop Module

	process Module

	tell Module

	rules Package
	rules Package

	base Module

	body Module

	eval_ Module

	full Module

	header Module

	meta Module

	parser Module

	ruleset Module

	uri Module

	conf Module

	config Module

	context Module

	errors Module

	message Module

	regex Module

	server Module

	scripts Package
	match Module

	oad Module

	compile Module

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Reference

pad Package

	plugins Package
	Module base

	Plugin awl

	Plugin body_eval

	Plugin dump_text

	Plugin dns_eval

	Plugin image_info

	Plugin header_eval

	Plugin mime_eval

	Plugin pdf_info

	Plugin pyzor

	Plugin relay_country

	Plugin replace_tags

	Plugin short_circuit

	Plugin textcat

	Plugin uri_detail

	Plugin whitelist_subject

	Plugin spf

	Plugin wlbl_eval

	Plugin razor2

	Plugin free_mail

	Plugin spam_cop

	Plugin dkim

	Plugin uri_eval

	Plugin relay-eval

	Plugin bayes

	protocol Package
	protocol Package

	base Module

	check Module

	noop Module

	process Module

	tell Module

	rules Package
	rules Package

	base Module

	body Module

	eval_ Module

	full Module

	header Module

	meta Module

	parser Module

	ruleset Module

	uri Module

conf Module

config Module

context Module

errors Module

message Module

regex Module

server Module

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Plugins

plugins Package

Module base

Plugin awl

Plugin body_eval

Plugin dump_text

Plugin dns_eval

Plugin image_info

Plugin header_eval

Plugin mime_eval

Plugin pdf_info

Plugin pyzor

Plugin relay_country

Plugin replace_tags

Plugin short_circuit

Plugin textcat

Plugin uri_detail

Plugin whitelist_subject

Plugin spf

Plugin wlbl_eval

Plugin razor2

Plugin free_mail

Plugin spam_cop

Plugin dkim

Plugin uri_eval

Plugin relay-eval

	members:	

	undoc-members:	

	show-inheritance:

		

Plugin bayes

	members:	

	undoc-members:	

	show-inheritance:

		

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Reference

 	pad Package

protocol Package

protocol Package

base Module

check Module

noop Module

process Module

tell Module

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Reference

 	pad Package

rules Package

rules Package

base Module

body Module

eval_ Module

full Module

header Module

meta Module

parser Module

ruleset Module

uri Module

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 previous |

 	OrangeAssassin 1.0a1 documentation

 	Reference

scripts Package

match Module

oad Module

compile Module

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	OrangeAssassin 1.0a1 documentation

Index

 Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

 _static/comment-bright.png

_static/minus.png

_static/up-pressed.png

changelog.html

 Navigation

 		
 index

 		OrangeAssassin 1.0a1 documentation »

Changelog

OrangeAssassin 1.0b (2017-03-28)

		Initial beta release

 © Copyright 2017, SpamExperts.
 Created using Sphinx 1.4.1.

_static/up.png

_static/ajax-loader.gif

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

